
Conceptual Design of a CUDA based packet
classifier

Alastair Nottingham1 and Barry Irwin2Security and Networks Research Group
Department of Computer Science

Rhodes University
E-Mail: 1anottingham@gmail.com 2b.irwin@ru.ac.za

Abstract—Packet classification and analysis is an important
task in network security, which typically relies on a flexible packet
filtering system to extrapolate important packet information from
each processed packet. This task is computationally intensive,
if highly parallelisable, and as such, classification of large
packet sets, such as those collected by a network telescope, can
require significant processing time in sequential environments.
In order to accelerate packet classification to facilitate real-
time classification of giga-bit network traffic, we aim to exploit
the inherent parallelism of packet filtering through the use of
CUDA enabled GPUs. In this paper, we introduce a variety of
relevant optimizations and bottlenecks in CUDA architecture,
and apply this knowledge to the conceptual design of a highly
parallel GPU packet classifier, optimised for efficient execution
on CUDA hardware. In particular, we focus on accelerating
memory transfer between long term storage and the CUDA
device, minimizing memory access latency on the device, and
maximizing processing throughput within each CUDA kernel.

Index Terms—Packet Classification, GP-GPU, CUDA

I. INTRODUCTION

The task of classifying a single packet is essentially a trivial
operation. In an abstract sense, it may be considered as a
boolean valued function which is applied to packet data in
order to determine a classification result [1]. The function,
termed a filter, may be simple, comprising only a single test, or
more sophisticated, involving multiple comparisons evaluated
within a predicate to return a result. A typical packet classifier
evaluates a small, static set of one or more filters over large vol-
umes of packet data [1], [2], [3], a repetitive procedure which
is ideally suited to parallel processing. Unfortunately, due to
the limited availability and affordability of parallel processing
hardware, and the significant processing overhead inherent in
filtering large packet sets, most packet filtering algorithms have
been heavily optimised for sequential execution so as to reduce
processing time as much as possible [1], [3], [4]. Despite
numerous optimizations however, sequential packet classifiers
often take longer to classify a packet set captured off a giga-bit
network interface than it took the set to arrive, making them
infeasible for real-time traffic analysis.

By leveraging CUDA (Compute Unified Device Architec-
ture) enabled GPU (Graphics Processing Unit) coprocessors
to accelerate packet filtering throughput, packet classification

The authors would like to acknowledge the financial support of Telkom SA,
Comverse, Stortech, Amatole Telecom Services, Bright Ideas 39 and THRIP
through the Telkom Centre of Excellence in the Department of Computer
Science at Rhodes University.

could be utilised in high-resolution real-time network monitor-
ing and long-term packet capture analysis. In order to achieve
this, it is necessary to devise a suitable algorithm, tailored
to GPU architecture, and optimised to ensure maximum uti-
lization of GPU resources. Unlike sequential demultiplexing
algorithms which search for the first matching filter [2], [3],
[4], [5], the algorithm discussed is exhaustive, evaluating
all filters against every packet in order to collect a more
accurate set of classifications. It is worth noting that while an
OpenCL implementation will not be considered in this paper,
the conceptual design presented is also applicable within an
OpenCL implementation, with minimal modification required
[6].

In section II, we provide a brief introduction to GPU ar-
chitecture, and discuss some useful observations and methods
for improving kernel and memory performance. In section
III we apply this knowledge to the conceptual design of a
CUDA kernel, optimised to maximise filter throughput, thus
minimizing execution time. Finally, in section IV, we provide
a summary.

II. OVERVIEW OF GPU ARCHITECTURE

GPU architecture has a significant impact on the effec-
tiveness of data processing strategies which could be lever-
aged to process packets efficiently [7]. Before addressing the
limitations of GPU architecture with respect to individual
algorithmic scenarios, it is first necessary to understand the
broader benefits and weaknesses of GPU architecture which
impose these limitations. This section briefly considers some
important considerations in algorithm design.

A. Kernel Execution

A CUDA Kernel is a function which is executed by the host
process on the CUDA device, and essentially encapsulates a
CUDA program or procedure [8]. Simply put, Kernels execute
a collection of threads, typically over a region of device mem-
ory, with each thread computing a result for a small segment
of data. In order to manage thousands of independent threads
effectively, kernel threads are divided into thread blocks, with
each thread block being limited to a maximum of 512 threads
[8]. Thread blocks are conceptually positioned in a Grid which
may contain thousands of thread blocks. Each thread is aware
of its own position within its Block, its Block’s position
within the Grid. Thus, each thread can calculate, through an



application specific algebraic formula, which elements of data
to operate on, and which regions of memory to write output
to [8].

Conceptually, kernels support a parallel execution model
called SIMT [8], or Single Instruction, Multiple Thread. This
model allows threads to execute independent and divergent
instruction streams, facilitating decision based execution which
is not provided for by the more common SIMD (Single
Instruction Multiple Data) execution model. SIMT is limited
however, as each physical multiprocessor contains only a single
instruction register which drives eight independent processing
cores simultaneously. Thus, any divergence between threads
executing on the same multiprocessor forces the instruction
register to issue instructions for all thread paths sequentially
whilst non-participating threads sleep [8], [7]. Furthermore,
each processing core can issue a single instruction to four
distinct threads in the time between each instruction register
update, giving a total of 32 threads executing a single instruc-
tion. Thus, significant thread divergence within the cluster of
the 32 threads executing on a multiprocessor, termed a Thread
Warp [8], can dramatically impair performance [7].

CUDA Kernels are expressed using C’99 syntax, and as
such facilitate all requisite bit wise, algebraic, comparative and
assignment operators [8]. Most operators perform relatively
well, with the exception of integer division and modulo op-
erations which are significantly more expensive [7]. The cost
of these operations can be avoided in cases where the divisor
or modulus is power of two, as the operations can easily be
translated into efficient bit shift and bit wise and operations
respectively [7].

B. Memory
CUDA devices provide access to several memory regions,

each with their own benefits and limitations. Globally accessi-
ble memory regions reside in device DRAM, while local vari-
ants reside on the multiprocessor chip. This section describes
relevant performance considerations regarding these memory
variants.

1) Global Memory: Global memory is the most abundant
memory region available on CUDA devices, and is capable of
storing hundreds of megabytes of data. Unfortunately, while
global memory provides abundant data storage capacity, this
comes at the expense of access latency, with individual requests
requiring between of 200 and 1000 clock cycles to succeed [8],
[7]. As is evident, this introduces a critical bottleneck in kernel
execution, which can significantly impoverish the processing
throughput in data intensive applications. Fortunately, CUDA
devices support Memory Access Coalescing, which effectively
combines small global memory requests from multiple threads
in a thread warp into a single, multi-thread request [7]. This can
greatly improve warp-level access latency, but unfortunately
is not always possible to achieve. In a compute level 1.3
device, threads in a half-warp will coalesce their memory
access if and only if they request data from the same small
segment of global memory [7]. In compute capability 1.0 -
1.2 devices, coalescing only occurs if sequential threads access
sequential memory elements [7], and is thus even more difficult
to achieve.

2) Constant Memory: Constant memory is a small read-
only region of globally accessible memory which resides in
device DRAM [8]. In contrast to global memory, constant
memory has only 64KB of storage capacity, but benefits from
an 8KB on-chip cache which greatly reduces access latency
[7]. While a cache-miss is as costly as a global memory read, a
cache-hit reduces access time to that of a local register, costing
no additional clock cycles at all [7]. Due to its limited sise
however, its use is significantly limited.

Figure 1. Avoiding coalescing constraints using texture memory [7].

3) Texture Memory: Texture memory essentially provides a
compromise between global and constant memory. Each multi-
processor on the CUDA device contains a 64KB texture cache
which can be bound to an arbitrarily sised region of global
memory [8], [7]. As a result, texture bound memory performs
consistently, and faster than coalesced global memory (see
figure 1), making it ideal for accelerating data access [7].
Texture memory, like constant memory, is read only, and thus
only provides performance benefits with regard to memory
reads, and cannot be leveraged to accelerate global memory
writes [8].

4) Registers: Registers are contained within a register file
on each multi-processor [8], and provide fast thread-local
storage during kernel execution. In compute capability 1.3
devices, each multi-processor contains 16 384 registers [8],
which are shared between all threads in the executing thread
block. Registers are typically accessed with zero added clock
cycle overhead, but may incur a slight performance penalty
due to read-after-write dependencies and register bank conflicts
[7]. Executing threads have no direct control over register
allocation, and as such have little control in avoiding register
bank conflicts. By ensuring that thread blocks contain a
multiple of 64 threads however, it is possible to improve the
chances of avoiding a register bank conflict [7]. Read-after-
write dependencies, on the other hand, have a latency of 24
clock cycles per occurrence, but this overhead is completely
hidden in blocks containing more than 192 threads [7]. Thus,



registers perform best when the executing block has a thread
count that is both greater than 192, and is a multiple of 64.

While each multiprocessor has only 16 384 registers avail-
able, kernels do not fail to execute when the blocks executing
on a multiprocessor exceed this limit [8]. Once the register
file is exhausted, the multiprocessor allocates register storage
on device DRAM. As such, kernels requiring more than 16
384 registers per multiprocessor will execute correctly, but will
incur a significant performance penalty due to the high latency
of DRAM access [8]. As such, register utilization should be
minimised in order to ensure maximum execution speed.

5) Shared Memory: Unlike register memory, shared mem-
ory is block-local, facilitating cooperation between multiple
threads in an executing block [8]. Shared memory is limited
to 16KB of storage per multi-processor on compute capability
1.3 devices [8] and, as multiple blocks may be executing on
a single multi-processor, is a severely limited resource. Never
the less, as long as no shared memory bank conflicts arise [7],
access latency is equivalent to that of register memory.

In compute capability 1.3 devices, each multi-processor’s
shared memory is divided between 16 separate 1KB memory
banks [7]. A bank conflict arises when two separate threads
in a half-warp access the same memory bank at the same
time, in which case the request is split into as many conflict
free memory requests as possible [7]. As a result, if care is
not taken, shared memory performance can be significantly
impoverished. As long as each thread in a half-warp only
accesses a single consecutive shared memory address however,
bank conflicts are entirely avoided.

6) Memory Transfer: The process of transferring data be-
tween host memory and device DRAM is a necessary re-
quirement in all useful kernels. Without this functionality,
a kernel would not be able to collect data to process, or
communicate computational results to the waiting host process.
Unfortunately, memory transfer is a relatively slow process,
as it is limited by the bandwidth of the PCIe bus, and can
therefor significantly impact on total processing time if it is
not optimised [7]. Page-locked memory performs better than
pageable memory, and allows for a number of optimizations,
but is scarce resource and should not be overused [7]. For the
purposes of this discussion, we shall ignore pageable memory
due to its poor performance [7], and focus explicitly on Page-
locked memory.

Typically, the host process synchronously transfers data to
the waiting device. In synchronous transfer, the host process
only regains control after all memory has been transferred, and
can thus only execute a kernel after the transfer completes [8].
Of course, as most kernels operate on only a subset of the input
data, and could thus potentially begin executing select threads
prior to transfer completion, synchronous transfer often results
in wasted processing time [7]. By taking advantage of both
asynchronous transfer of page-locked memory and Streams
however, it is possible to begin executing a kernel on a subset
of the data prior to the completion of the entire transfer process
[7]. When using Asynchronous transfer, control returns to the
host process immediately after a memory transfer is scheduled,
which allows kernels to be scheduled (but not executed) prior
to transfer completion, and opens the door to asynchronous

kernel execution through the use of streams [8], [7].
Kernels support multiple streams of execution, which effec-

tively allow a single kernel to be invoked multiple times with
separate input parameters [7]. Through streams, it is possible
to partition the data between each of the streams, and schedule
each stream to execute the kernel when their prerequisite data
has completed transfer. Thus, one stream can transfer data
while another stream executes a kernel, allowing transfer and
execution to overlap [7].

The rate at which data can be transferred to the device can
also be improved, by employing Write-Combined Memory
[7]. In contrast to standard page-locked memory transfers,
write combined memory prevents host side caching, effectively
freeing up L1 and L2 resources, and transfers roughly 40%
faster over PCIe [7]. This performance improvement comes at
the expense of host side read and write speed, which is slightly
reduced due to the lack of caching.

Alternatively, Memory transfer can be eliminated all to-
gether through the use of Mapped Memory [7]. Memory
declared as mapped is read directly from host memory, and as
such, removes the necessity to explicitly transfer data to device
memory [7]. Mapped memory is most useful on integrated
GPUs, since both host and device share the same memory,
and as such transfer becomes redundant. On discreet GPUs,
mapped memory is transferred through the PCIe bus, and
as such, can introduce significant bottlenecks [7]. Given its
usefulness in integrated GPUs it is however worth mentioning.

III. CLASSIFIER DESIGN

The architectural specifics of CUDA devices imposes certain
constraints on the design of a GPU based packet classification
tool. In this section we discuss the limitations of the canonical
control flow graph approach with respect to a CUDA enabled
implementation, and suggest an alternative processing strategy
to maximise performance.

A. Contemporary Packet Filters

In modern network environments, packet filtering tasks have
become relatively numerous, and typically fall into one of
several categories. These include IP Routing algorithms [9],
[10], [11], [12], which operate exclusively over the IP 5-tuple,
Deep Packet Inspection algorithms [13], [14], which operate
over packet payloads, and Demultiplexing algorithms, used in
both end-point demultiplexing and packet header analysis.

The proposed packet filter implements a demultiplexing
algorithm, as they provide for sufficient generality through pro-
tocol indepence, providing the necessary flexibility to support
classification of arbitrary protocols. Unfortunately, the majority
of modern demultiplexing filters derive their architecture from
BPF or BPF+ [2], [3], [4], [5], [15], [16], [17], [18], which
were developed to maximise classification speeds on sequential
desktop processors (see Section III-B). Furthermore, due to
the high traffic volumes transferred over modern networks,
demultiplexing algorithms have become increasingly reliant on
fairly low-level optimisations in order to maximise throughput
[15], [16], [18]. Due to the significant architectural differences
and divergent performance considerations of GPUs, CPUs and



FPGAs (Field Programmable Gate Arrays), such specialisation
significantly reduces algorithm portability.

As result of these limitations and the numerous restrictions
imposed when optimising architecture for GPU based execu-
tion, existing algorithms prove inadequate in a highly opti-
mised CUDA context. In the following subsection, we detail
the primary limitation of modern demultiplexing algorithms
executing on GPU coprocessors.

B. Limitations of Control Flow Graphs

Control Flow Graphs, or CFG’s, are a decisional tree
structure used as the conceptual foundation of packet filters
such as BPF, MPF, DPF, and BPF+ [2], [3], [4], [5], as well
as xPF, FFPF and SWIFT [15], [16], [18]. Their effective-
ness is due to their susceptibility to optimization techniques
such as partial redundancy elimination and predicate assertion
propagation, which greatly reduce redundant processing and
allow a sequential processor to classify packets in a minimal
time [3]. While a CFG approach is certainly valid, if not
desirable, in the context of a sequential packet processor, the
severe performance penalties incurred from thread divergence
in CUDA kernels [7], coupled with the necessity for such
divergence in a CFG implementation, make such a technique
infeasible to use in a CUDA context.

As such, an alternative approach is needed which minimises
thread divergence in each thread warp and capitalises on
CUDA optimization strategies in order to maximise classifica-
tion throughput. In the following subsections, we will discuss
the design of a CUDA based packet classifier which leverages
this knowledge to maximise classification performance.

C. Packet Transfer

Figure 2. Packet collection triple buffering

Before classification can be carried out, packets must first be
transferred to the device. Packets may arrive for processing via
two distinct mediums: either they are captured from a network
interface (a live capture); or they are read from a packet dump
file help in long term storage. We shall focus on packet dump
file processing, while noting that the techniques discussed may
easily be extended to support live packet captures.

First, it is worth addressing the most notable bottleneck in
packet transfer, namely Disk I/O. SATA II hard disks are the
dominant storage medium in modern desktop systems, and
offer 300 Mbps read speeds. In contrast, a PCIe 2 bus can
transfer between host and device memory at up to 8Gbps [7].
We shall briefly discuss three potential solutions to mitigating
this bottleneck, as well as their negative implications. first,

utilizing a faster storage medium could potentially alleviate
much of this performance gap, but the necessity for spe-
cial hardware reduces its effectiveness in the general case.
Striping data over multiple hard drives provides a potentially
less expensive alternative, but requires multiple, appropriately
formatted drives as a prerequisite. Finally, RAM Disks, which
reside in host memory and may be created on any modern PC,
can provide extremely fast access speeds, but are dependent
on host memory for storage, thus limiting their capacity and
making them infeasible in systems with limited Host RAM.
Due to the flaws inherent in each of these solutions, selection
should be based on particular circumstance.

We shall now consider a mechanism for minimizing the
volume of data to be transferred over the PCIe bus, so as to
reduce transfer times and minimise memory requirements on
the device. When classifying packets, a subset of the packet
data, contained within the packet header, are compared to a
set of target values to produce a boolean result [1], [3]. These
boolean values are combined through boolean algebra to define
a filter, which succeeds in classification if the filter predicate
returns true. As filters typically comprise relatively few com-
parisons, and noting that the number of distinct comparisons
in a filter typically far outnumber the number of distinct data
elements they collectively test [1], it is possible to reduce
packets by cropping unnecessary data during collection from
storage. By determining which bytes in a packet are necessary
for classification during the filter compilation stage, unused
bytes may be skipped. The filter compiler need then only adjust
the byte indexes to be tested in the packet data array, ensuring
that the correct values are referenced. This mechanism should
also improve packet collection performance, as less data need
be communicated over disk I/O.

While packet reduction improves the rate at which pack-
ets can be transferred between long term storage and the
CUDA device, it does not provide a mechanism to ensure
that the device is not starved of packet data while packets
are collected from disk. Typically, CUDA memory transfers
are synchronous, and prevent the host from executing any
operations until such time as the transfer is complete [8].
An acceptable strategy in dealing with this problem involves
intelligent utilization of packet buffers. First, packet data is
copied from long term storage into a triple buffered staging
area executing in a separate thread. The child thread continu-
ously fills empty buffers, while the parent process responsible
for kernel execution transfers full buffers onto the device
through asynchronous write-combined memory transfers, using
a separate processing stream for each buffer. This should
ensure that periods of data starvation are minimised [8], [7].

D. Multi-phase Classification Method

As discussed in section III-B, classification methods which
depend on divergent execution paths, such as CFGs, are not
particularly useful in the context of GPUs [7]. As a result,
it is difficult to efficiently exclude certain classifications from
processing based on run-time observations of data. We can
however exploit the Match Condition Redundancy property
of Filter sets, which states that, given set of filters, the



total number of unique match conditions in a filter set is
significantly less than the number of distinct filters in that set
[1]. We can thus pre-compute all match conditions for each
packet in a separate kernel, called the rule kernel, and store the
results of these comparisons in device memory. As all packets
are exhaustively compared against all match conditions, no
threads need diverge, providing for efficient processing [7].

After the rule kernel completes execution, a second subfilter
kernel is launched, which operates on the boolean results of
the previous classification step. Each subfilter is a predicate
whose result is calculated by a single thread, and stored as
a boolean value in device memory. As with the rule kernel,
subfilters are exhaustively calculated for each packet, with each
thread classifying multiple subfilters. The results of both the
rule kernel and the subfilter kernel are then used in a final
filter kernel, which operates similarly to the subfilter kernel,
but whose results constitute the final classification of each
packet with respect to each filter. This two-step filter evaluation
algorithm allows for sub-predicates which occur in multiple
filters to be pre-computed to reduce redundant computation.

While it is possible to perform all these steps within a
single kernel, such a design would not allow for kernel grid
dimensions to be optimised for each individual step, and
would also prohibit binding intermediate results to texture
references to improve memory access speeds [8]. Thus, a multi
kernel approach provides for greater flexibility in optimizing
classification speeds, making it the more attractive than a single
kernel implementation.

We shall now briefly consider the structure of each of these
kernels, with respect to thread counts and memory utilization.

Figure 3. Optimised Memory Layout for coalescing.

1) Rule Kernel: The Rule kernel essentially compares a set
of bit ranges within a packet to a set of target values, and
stores the results in device memory. As the incoming packet
data is read only once, and is never modified, it may be
bound to a texture reference in order to exploit the texture
cache. Each block in the rule kernel contains exactly 256
threads, thus mitigating register bank conflicts as well as
hiding register read after write dependencies [7]. Each thread
is responsible for classifying up to 16 rules, which are stored
in constant memory to ensure fast access. If the number of
rules contained in the rule set exceeds 16, then rules are
divided over multiple threads, partitioned appropriately into
distinct thread warps so as to prevent any thread divergence.
Packet data is read iteratively through texture fetching, with

each distinct data element being extracted into a temporary
register and compared to its associated target. The results
of each comparison are stored in shared memory, which
provides 16 bytes of storage per thread. Thus, a single block
will contain 256 threads, which collectively consume 4 KB
of shared memory. In compute capability 1.3 devices, each
multiprocessor supports a maximum of 1024 threads, 16 KB
of shared memory, and 16 384 registers. Thus, four blocks may
execute simultaneously on a multi-processor at once, and each
block can utilise a maximum of 16 registers without incurring
a performance penalty [7].

Once all rules have been compared, results stored in shared
memory are copied into device memory. In order to optimise
for coalescing, the results are grouped by rule rather than
by packet, with the first n bytes containing the result of the
first rule comparison for all n packets, the second n bytes
containing the results of the second rule comparison for all
n packets etc. (see figure 3). As all threads will write the
the results of rules sequentially, this memory layout ensures
that threads can coalesce while reading and writing to global
memory.

2) Subfilter and Filter Kernels: Both the subfilter and filter
kernels read in boolean values from device memory and and
compute the result of a predicate equation. Boolean values
arrive optimised for coalescing, thus facilitating fast memory
reads. For improved performance, these regions may be bound
to a texture reference prior to the kernels execution, so as to
exploit the texture cache [7]. Again, kernels execute in blocks
of 256 threads, with each thread allocated 16 bytes of shared
memory to store the results of 16 filter or subfilter predicates. If
more than 16 predicates need to be evaluated, they are divided
between multiple threads in a manner similar to the rule kernel.
This ensures that no thread diverges within a warp, as each
packet will be compared against a constant set of predicates,
which are stored as commands in constant memory.

E. Preliminary Results

Figure 4. A Simple IP filter: Preliminary kernel classification speed
comparison.

Preliminary results show promise, with early CUDA kernels
averaging a throughput between 52 million and 58 million
packets per second when performing a simple IP filter on a



single NVidia Geforce GTX 275. In contrast, the same filter
implemented using the PCAP library in C++ resulted in be-
tween 14 million and 16 million packets per second throughput
on an Intel Q9550 Quad-core processor (see figure 4). We
expect throughput to increase as development continues.

IV. SUMMARY

In this paper, we have attempted to devise a parallel fil-
tering algorithm which capitalises on CUDA architecture to
accelerate classification. After briefly introducing the problem
space, we focused on the architecture of CUDA devices and
kernels, and detailing relevant performance bottlenecks and
optimization opportunities. In particular, we considered the
performance of the various memory mediums available to
CUDA kernels, and how such performance may be optimised.

After considering GPU architecture, we discussed the per-
formance penalties incurred by Control Flow Graphs, lever-
aged by most desktop packet filters [2], [3], when implemented
on GPUs. This brought us to the conceptual design of a
CUDA classifier, which applied the optimization knowledge
previously detailed so as to maximise performance. The section
enumerated several design choices regarding packet collection,
buffering and host-to-device memory transfer acceleration, as
well as device-side storage and execution optimization. We
concluded by providing some early implementation results.

REFERENCES

[1] D. E. Taylor, “Survey and taxonomy of packet classification tech-
niques,” ACM Comput. Surv., vol. 37, no. 3, pp. 238–275, 2005.
http://doi.acm.org/10.1145/1108956.1108958.

[2] S. Mccanne and V. Jacobson, “The bsd packet filter: A new architecture
for user-level packet capture,” pp. 259–269, 1993.

[3] A. Begel, S. McCanne, and S. L. Graham, “Bpf+: exploiting global data-
flow optimization in a generalized packet filter architecture,” SIGCOMM
Comput. Commun. Rev., vol. 29, no. 4, pp. 123–134, 1999.

[4] D. R. Engler and M. F. Kaashoek, “Dpf: fast, flexible message demulti-
plexing using dynamic code generation,” in SIGCOMM ’96: Conference
proceedings on Applications, technologies, architectures, and protocols
for computer communications, (New York, NY, USA), pp. 53–59, ACM,
1996.

[5] M. Yuhara, B. N. Bershad, C. Maeda, J. Eliot, and B. Moss, “Efficient
packet demultiplexing for multiple endpoints and large messages,” in
In Proceedings of the 1994 Winter USENIX Conference, pp. 153–165,
1994.

[6] “The opencl specification, version 1.0.” Online, April 2009.
[7] “Cuda best practices guide, version 2.3.” Online, July 2009.
[8] “Cuda programming guide, version 2.3.” Online, July 2009.
[9] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, “Fast and scalable

layer four switching,” SIGCOMM Comput. Commun. Rev., vol. 28, no. 4,
pp. 191–202, 1998.

[10] T. Y. C. Woo, “A modular approach to packet classification: Algorithms
and results,” in In IEEE Infocom, pp. 1213–1222, 2000.

[11] F. Baboescu and G. Varghese, “Scalable packet classification,” SIG-
COMM Comput. Commun. Rev., vol. 31, no. 4, pp. 199–210, 2001.

[12] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet classification
using multidimensional cutting,” in SIGCOMM ’03: Proceedings of
the 2003 conference on Applications, technologies, architectures, and
protocols for computer communications, (New York, NY, USA), pp. 213–
224, ACM, 2003.

[13] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P. Markatos, and
S. Ioannidis, “Gnort: High performance network intrusion detection
using graphics processors,” in RAID ’08: Proceedings of the 11th
international symposium on Recent Advances in Intrusion Detection,
(Berlin, Heidelberg), pp. 116–134, Springer-Verlag, 2008.

[14] Y. H. Cho and W. H. Mangione-Smith, “Deep network packet filter
design for reconfigurable devices,” Trans. on Embedded Computing Sys.,
vol. 7, no. 2, pp. 1–26, 2008.

[15] S. Ioannidis and K. G. Anagnostakis, “xpf: packet filtering for low-cost
network monitoring,” in In Proceedings of the IEEE Workshop on High-
Performance Switching and Routing (HPSR, pp. 121–126, 2002.

[16] H. Bos, W. D. Bruijn, M. Cristea, T. Nguyen, and G. Portokalidis, “Ffpf:
Fairly fast packet filters,” in In Proceedings of OSDI04, pp. 347–363,
2004.

[17] A. S. Tongaonkar, “Fast pattern-matching techniques for packet filtering,”
tech. rep., 2004.

[18] Z. Wu, M. Xie, and H. Wang, “Swift: a fast dynamic packet filter,”
in NSDI’08: Proceedings of the 5th USENIX Symposium on Networked
Systems Design and Implementation, (Berkeley, CA, USA), pp. 279–292,
USENIX Association, 2008.

Mr Alastair Nottingham completed his BSc (Hons) in Computer Science
in 2008 . His research interests include high-performance parallel processing,
computer security, and artificial intelligence, as well as computer graphics
and data visualisation. Alastair is currently in his second year of MSc Study
focusing on High performance packet classifiers at Rhodes University, within
the Security and Networks Research Group (SNRG).


