
 

Abstract−Communication is an essential life skill used 

to interact with and share information between people. 

The Deaf, who are not able to participate in normal 

communication with the hearing community, are 

therefore marginalised. To address this communication 

gap, this paper presents a novel learning-based 

framework that provides sign-language recognition in 

unconstrained environments by tracking the right and 

left hands independently. A segmentation algorithm that 

assists the tracking process of multiple moving objects 

that share similar characteristics, such as the hands, is 

suggested and referred to as region reference points. The 

proposed framework combines region reference points 

with skin detection, motion detection and the selection of 

skin-identified clusters. To address the problem of 

ambiguity caused by occlusion, the hands are learnt 

while tracking using a support vector machine and 

predicted when separated from the occlusion state. The 

framework is evaluated on ten isolated South African 

Sign Language gestures performed by six individuals. 

The experimental results show that the framework 

achieved an average rate of 82% on a hand tracking 

system. 

 

Index terms: connected components labelling, region 

reference points, sign language recognition, support 

vector machine  

I. INTRODUCTION 

Over the past decade the technological advancement of 

mobile communications has seen exponential growth, 

enabling millions of people to interact socially and 

providing socio-economic opportunities [3]. The benefits 

arising from this rich form of social communication and 

information exchange are unfortunately not available for the 

hearing impaired or Deaf
1
, who primarily use sign language 

[2]. Skilled interpreters are often used to alleviate the 

communication problem; however, there are not enough of 

these interpreters to assist the many Deaf individuals in 

South Africa that require such services. Furthermore, their 

services are expensive. An automated translation system that 

would bridge the communication between the two 

communities would be a valuable tool to the Deaf. 

 Such an automated translation system encompasses a 

multidisciplinary research area that involves image 

 
1 ‗Deaf‘ in this context refers to people that use South African sign 

language as their primary language. 

processing, pattern recognition, linguistics and natural 

language processing. Sign language recognition, a 

component of the system, is a challenging problem mainly 

because of the complexities involved in the visual analysis 

of signed gestures. The visual analysis of sign language 

includes facial expression recognition, hand shape 

recognition and hand position detection. Researchers who 

focused on South African Sign Language (SASL) mostly 

work on hand tracking and identification without explicitly 

distinguishing between the right and left hands. 

Distinguishing between the right and left hands gives rise to 

three additional challenges: (1) dealing with occlusion 

factors; (2) continuing to distinguish between the right and 

left hands after occlusion has occurred; and (3) recovering 

from the tracking failure of either hand.  

 In this paper, a novel learning-based approach to 

independently track the right and left hands is presented. 

The vision based method is implemented by applying 

contours to the skin, identified as areas that are likely to be 

the hands or face, and handing occlusion by distinguishing 

between the two hands. These contours are clustered 

together using connected components analysis so that noisy 

areas are reduced. A novel segmentation algorithm, referred 

to as region reference points (RRP), divides an image into a 

number of regions where each region holds information 

regarding the areas that have motion, skin colour and cluster 

centres. This information is then used to identify hands in a 

particular region that is used in the subsequent frame as a 

reference point, thereby limiting the search area and further 

reducing noise. The algorithm identifies the features of the 

hand that are ―good‖ features to learn, based on a previous 

reference point. Furthermore, the reference point can be 

used to identify when the tracking of a hand has failed. 

While the hands are tracked, the ―good‖ features are learnt 

using a support vector machine (SVM). When occlusion 

occurs, the learning process is stopped and the trained model 

is used to predict and re-identify the hands as either the right 

or left hand. The approach was evaluated on ten isolated 

SASL gestures performed by six individuals. The results 

indicate that the hand tracking system achieved an overall 

accuracy of 82% on average.  

 This paper is organised as follows: in section II, related 

work is discussed; section III discusses the framework that 

combines the selection of contours with RRP; the 

experimental analysis and results are presented in section 

IV; and the paper is concluded in section V, where future 

work is also identified. 
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II. RELATED WORK 

Hand tracking is defined as a process that aims to 

estimate continuous hand motions in image sequences [5]. 

Research on hand tracking algorithms varies from those that 

use auxiliary means and those that are purely passive.  

In algorithms that use auxiliary means, devices such as 

data suits, gloves or position markers are often used to find 

direct measurements of the joint angles and spatial positions 

of the hands [11]. These systems are generally faster in 

terms of real-time processing and provide more accurate 

information. This is, however, an impractical solution in 

everyday tasks, as using these devices is inconvenient and 

often requires some form of calibration. Wang and Popović 

[14] tracked a hand covered with a glove that was imprinted 

with a custom pattern. They designed the pattern in order to 

simplify the estimation of hand postures that would allow a 

nearest-neighbour approach to be used in tracking the hands. 

In addition, they used a Hamming distance-based 

acceleration data structure to obtain interactive speeds and 

inverse kinematics for accuracy. The results were visually 

presented and showed a positive result; however, monocular 

depth ambiguities remain a problem when using this 

method.  

A more practical solution is to use purely passive 

algorithms that allow the spatial positions of the hands to be 

found in non-invasive ways by using various image-

processing algorithms. In Liu and Zhang [12], the hand-

tracking method is based on a particle filter framework 

combined with local binary patterns and colour cues. An 

evaluation of this framework shows that the combination of 

local binary patterns and colour cues contributes to more 

robust tracking of the hands than with either cue alone. An 

approach that combines a modified version of the maximally 

stable extremal region tracker that efficiently calculates 

colour likelihood maps to detect and track the hands was 

designed by Donoser and Bischof [8]. By using this 

combination, detection of the hands is performed efficiently 

by only searching areas with high likelihood values; 

however, this approach does not demonstrate any occlusion 

handling. Asaari and Suandi [4] used a combination of a 

predictive framework and an appearance model to estimate 

the state of a hand based on its location in the previous 

frame. In their predictive framework, adaptive Kalman 

filters were employed and a combined form of skin colour 

and motion cues were used to observe the hand state in 

successive frames. Their appearance model was represented 

by means of eigenspaces. It provides a compact description 

of the hands and was able to learn the eigenbases 

simultaneously while updating the model to account for any 

appearance changes over time. Their results show an 

average hand detection rate of 97%. They, however, only 

evaluated their system on single hand tracking.  

Although non-vision based approaches have the 

advantage of real-time performance, they are expensive, 

cumbersome in a sign language domain and cannot be used 

in unconstrained environments. On the other hand, vision 

based approaches are inexpensive and have the capabilities 

of achieving near to real-time performance. Therefore, in 

this paper, a vision-based approach will be followed, as it 

would be more suitable for hand-tracking in unconstrained 

environments. 

III. INDEPENDENT HAND-TRACKING FRAMEWORK 

In the following sub-sections, the proposed framework 

will be discussed. The discussion will deal with the selection 

of clusters, the proposed segmentation algorithm, RRP and 

the handling of occlusion. 

A. Cluster Selection 

Researchers developing approaches for hand-tracking 

applications often use a single global feature characteristic 

such as either colour or shape. In the present research, 

multiple features (colour, motion and shape) are exploited in 

order to extract the maximum amount of information that 

can be collectively used to isolate and track a hand in 

unconstrained environments. When tracking the limbs of an 

individual, the most dominant feature would be colour, as it 

can easily be distinguished from other objects in the 

background. Furthermore, this feature is robust against 

scaling, rotations and partial occlusions. The process of 

identifying these colour features is referred to as skin 

detection. Identifying skin-coloured pixels, however, is not 

easy because the appearance of these features varies due to 

factors such as changes in light, viewing geometry and the 

characteristics of the camera. Furthermore, scientific studies 

have shown that skin-colour diversity in South Africa is one 

of the highest in the world [13]. These studies suggest that 

skin-colour features would differ from person to person and 

an adaptive method to retrieve these features among all 

races and skin tones is therefore required.  

Although an optimal colour space for skin detection does 

not exist, many researchers agree that the hue-saturation-

value (HSV) colour space has a restricted range on the 

human skin colour [6]. They also agree that the hue 

component of the HSV colour space can be used to 

effectively isolate skin colour, while discarding the value 

component, which is directly related to the colour luminance 

information. In contrast to other researchers [6], who only 

use the hue component (see Figure 1(a)), the present 

research uses both the hue and saturation components, 

where the saturation component provides the degree of the 

dominant colour of an area in proportion to its brightness 

(see Figure 1(b)). 

  

     
Figure 1(a): Back-projected 

image using hue only 

(b): Back-projected image 

using hue and saturation 

 

In contrast to other researchers, who employed a trained 

model to identify skin-coloured pixels, a more efficient way 

is proposed that directly identifies the colour distribution of 

a person‘s skin colour and adaptively changes the colour 

distribution according to changes in the scene, such as light. 

Trained models often rely on the skin-colour range on which 

it was trained and need to be retrained if small changes 

occur or simply fail if large changes, such as a burst of light, 

occur. The proposed method [1] effectively determines the 

colour distribution instantly by using the area around the 

nose with a radius of ten pixels to determine the colour 



 

distribution in every frame. The colour distribution in this 

radius ensures that the optimal skin colour distribution can 

be extracted without being negatively affected by facial hair, 

lips or eyes. In the scene, the regions of interest, identified 

by the skin detection method, are the hands and face. In 

order to determine these areas, connected-components 

labelling [7] is used to extract the contour surrounding these 

areas. 

Connected-components labelling is an algorithm that 

groups a set of pixels into components based on the level of 

its pixel connectivity. When all the groups have been 

determined, every pixel is labelled according to the 

component it was assigned. It is a sequential two-pass 

algorithm that iterates through the two-dimensional (2D) 

binary image using either 4-connectivity or 8-connectivity 

labelling [7]. 

In the present research, 8-connectivity labelling is used 

because it searches for connected regions in all directions. In 

the first pass, moving from the top left of the image to the 

bottom right; a temporary label is assigned to each skin-

coloured pixel based on the values of the neighbouring 

pixels that have already been processed. When none of the 

top-left four neighbouring pixels (pixels that have already 

been passed) is a skin-coloured pixel, then a new label is 

assigned to the current pixel; however, when only one 

neighbouring pixel is considered to be a skin-coloured pixel, 

then its label is assigned to the current pixel. When a skin-

coloured pixel is found containing two or more skin-

coloured neighbouring pixels that have different labels, then 

the labels associated with these neighbouring pixels are 

stored as being equivalent. These equivalences are then used 

to determine equivalence classes after the first pass, where a 

unique label is assigned to each class. In the second pass, the 

label of its corresponding equivalence class replaces each 

temporary label. 

The connected components are then used to extract the 

contour clusters that define the skin-coloured areas. This is 

followed by the analysis of each cluster, where clusters 

larger than the face and clusters smaller that the fist (half the 

size of the face) are discarded. This process of eliminating 

unwanted clusters reduces the amount of noise in a frame, as 

seen in Figure 2. 

 

     
Figure 2(a): Extracted contour 

clusters from the skin-detected 

image   

(b): Filtered contour clusters 

of the skin-detected image  

B. Region reference points 

Tracking both the right and left hands of an individual is a 

complex task, because hands share many similarities that 

cannot easily be distinguished. In addition, the colour 

similarity between the hands and face is identical, which 

further complicates the task. Therefore, when tracking a 

single hand, it is possible that tracking may fail when the 

tracked hand comes near the face or the opposite hand. 

In this paper, the segmentation algorithm RRP is 

proposed. This algorithm assists in the tracking process of 

multiple moving objects that share similar characteristics, 

such as the hands, while simultaneously reducing the search 

area to regions that are most likely to contain the tracked 

object.  

RRP operates by dividing a 2D frame into a group of 

regions and by creating a 10x10 grid that results in 100 

regions that are defined and that are used as reference points 

in the tracking process (see Figure 3). The number of 

regions was selected based on the assumption that an 

individual that signs would be at a common distance from 

the camera such that only the upper half of the body would 

be visible.  

 

 
Figure 3: A grid of RRP applied to an image 

 
Each region is assigned to a sub-image that allows 

features relating to that region to be extracted when needed. 

It is linked to a neighbouring region, similar to the 8-

connectivity labelling described in the previous section. This 

association allows the immediate neighbourhood to be 

searched when tracking, thereby improving tracking speed 

and not searching the entire image. By searching the 

neighbouring region only it is possible to track multiple 

objects, even though they share similar characteristics. 

When comparing RRP to the tracking process that uses 

Bayesian filters, RRP differs in that it does not assume a 

constant velocity of the tracked object and allows the 

tracked object to change direction at any instance. 

Furthermore, each region contains an ―activated‖ flag that 

identifies the regions that most likely would contain the 

tracked object. In addition, when the system is used to track 

the hands, each region has a flag that identifies the region in 

which the right hand has been detected and one in which the 

left hand has been detected. The algorithm also allows for 

more flags to be added when three or more objects need to 

be tracked. 

 

 
Figure 4: The ―activated‖ regions are highlighted in blue squares. 

The pink circle identifies the right hand and the yellow circle 

identifies the left hand 

 

The idea behind the method is to use RRP to segment 

areas of high likelihood in which the hands can be found 

(see Figure 4). The tracking procedure would operate by 

searching for available skin-identified clusters in the 

immediate neighbourhood. This procedure would allow the 



 

hands to be tracked from one region to the next. If a cluster 

is not present in the immediate neighbourhood, then regions 

in the immediate neighbourhood would be searched for one 

containing the highest density of skin-coloured pixels. The 

pseudo code of the state transitions using the algorithm is 

shown in Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5: The pseudo code of the state transitions using RRP 

C.  Dealing with occlusion 

Occlusion is a common problem when tracking body 

parts due to the high dimensionality of the various body 

parts. In order to deal with occlusion, the shape of the hand 

is used to distinguish between the right and left hand. While 

tracking the hands in each frame, the regions containing the 

hands are converted to grayscale, noise is reduced by 

Gaussian blur and edge detection is applied to identify the 

shape of the hand. The edge features of the shape of hand 

are extracted and placed into a feature vector. For each 

feature vector, a label ―0‖ is given if the features belong to 

the right hand and a label ―1‖ if the features belong to the 

left hand. The feature vectors are then placed into a data file, 

and the model is subsequently trained using the radial basis 

function kernel in an SVM. In the framework, when both the 

right and left hand share the same region it is detected as 

occlusion due to the quantisation into larger regions, as 

shown in Figure 6(a). While the hands are in a state of 

occlusion, the SVM model is not trained. When the hands 

separate from the state of occlusion and are found to be in 

more than one region, the neighbourhood of the occluded 

region is ―activated‖, and if it contains a contour, then these 

regions are predicted using the trained model, as shown in 

Figure 6(b). 
 

      
Figure 6(a): The occlusion 

state 

(b): The separated state 

after occlusion  

 

After the regions have been predicted, the tracked regions 

are separated and the tracking procedure continues tracking 

the right and left hands independently.  

IV. EXPERIMENTAL ANALYSIS AND RESULTS 

This section describes experiments that were carried out 

to evaluate the independent hand-tracking framework in a 

sign-language recognition prototype. In the experimental 

setup, a single Logitech webcam connected to a notebook 

was used. This setup allowed for portability and the 

capturing of video sequences in unconstrained environments 

with varying levels of illumination. The video sequences 

were captured at approximately 12–14 fps with an image 

resolution of 640x480 pixels, and an average of 77 frames 

per video sequence.  

The evaluation was based on ten SASL isolated gestures, 

carefully selected from the Fulton School for the Deaf SASL 

Dictionary [10]. The set of selected isolated gestures 

includes signs that involve the use of a single hand, both 

hands and the intersection between two hands. It was 

important to use isolated gestures in these experiments and 

not continuous sign language gestures so that the proposed 

framework could be evaluated. In isolated gestures, gestures 

begin and end in the neutral pose, with arms and hands at 

the side of the body. Continuous sign language gestures 

consist of more than one isolated gesture with a single start 

and end pose. The recognition of continuous sign language 

gestures will require that the framework should include a 

tracking failure and recovery mechanism, as well as the 

ability to detect transitions between isolated gestures. The 

recognition of continuous sign language gestures will thus 

not be considered, but will be dealt with in future work. 

The ten SASL isolated gestures were performed by six 

individuals (three males and three females) with different 

body types and skin-colour tones, ranging from a very light 

to a very dark skin-colour tone. Each individual performed 

the ten gestures twice, resulting in two sets of 60 video 

sequences that were used for testing. The aim of capturing 

each gesture twice was to compare the two sets, named 

Test1 and Test2 in the following experiment.  

 
Figure 7: An example of the body proportions theory proposed by 

Da Vinci 

 

Step 1: Identify pixels that have moved in the frame. 

 If a region contains any pixels that have moved, 

o Then “activate” the region. 

 Else, 

o “De-activate” the region. 

Step 2: Identify skin-coloured pixels in a frame. 

 If a region contains any skin-coloured pixels, and is 

“activated” 

o Then leave the region “activated”. 

 Else, 

o “De-activate” the region 

Step 3: Track the hands in each frame 

 If a skin-cluster is present in the current region and the 

region is ―activated‖ 

o Then select the region. 

 Else if a skin-cluster exists in one of the neighbouring 

regions and the region is ―activated‖, 

o Then select the identified region. 

 Else if the current region does not contain a skin-cluster, 

nor any of the regions in the neighbourhood, 

o Then check whether the current region or 

regions in the neighbourhood has the highest 

skin-colour pixel density, and is ―activated‖, 

o Select the region with the highest skin-colour 

pixel density. 

 Else, if the current region and the regions in the 

neighbourhood are not ―activated‖, 

o Then the tracked hand has not moved and the 

current region is reselected, provided that it 

contains skin-coloured pixels.  

 

 



 

 
Figure 8: Comparison between the average tracking success rate between the first and second test on the ten isolated SASL gestures

 

Table 1: Results of the tracking evaluation of the framework in the 

first test set (%) 

 
Signer 

A 

Signer 

B 

Signer 

C 

Signer 

D 

Signer 

E 

Signer 

F 
Avg. 

Any 100 100 100 100 100 100 100 

Cup-

board 
48.4 45 46.9 97.4 65.2 64.6 61.2 

Elect-

ricity 
100 100 100 100 100 100 100 

Kitchen 100 100 100 100 100 100 100 

Man 100 100 71.2 100 100 100 95.2 

Please 56.6 100 54.1 68 100 100 79.8 

Small 39.4 59.4 37.5 88 48.3 68.2 56.9 

Towel 31.8 81.5 38.2 77.7 100 89.0 69.7 

Why 57.7 100 89.0 71.2 100 100 86.3 

Wrong 69.0 57.3 33.3 53.4 54.4 69.4 56.1 

Avg. 70.2 84.3 67.0 85.6 86.8 89.1 80.5 

  

To evaluate the framework, each video sequence was fed 

into the system. In the initial frames of each signed gesture, 

the hands are located next to the body of the signer (neutral 

pose). According to the body proportions proposed by Da 

Vinci [9], the hands of an average person in the neutral pose 

can be found at a position five times the length of the head, 

starting from the tip of the head, as seen in Figure 7. The 

right hand would be the hand on the right side of the body 

(from the perspective of the person whose body it is) and the 

left hand would be the hand on the left side of the body. 

After finding the hands, they are tracked using the 

prototype of the proposed framework. For each tracked 

location, a blue square identifies the tracking of the right 

hand and a green square identifies the tracking of the left 

hand, shown in Figure 6(b). When the hands intersect and 

self-occlusion occurs, only a green square should be seen 

(see Figure 6(a)). However, when the hands are separated 

from the occlusion state, the blue and green square should 

track the right and left hands, respectively, again. 

After feeding the video sequence to the system, the 

outcome was analysed by someone not related to the 

research. Similar to other researchers in this field [8, 12], 

subjective evaluation was used to perform the analysis. 

Thus, a frame was deemed correct if the right hand was 

enclosed by a blue square and a left hand was enclosed by a 

green square. If this were not true, the frame would be 

labelled as incorrect. 

The number of times a success was obtained was recorded 

and divided by the number of frames in the video sequence. 

The result was the average tracking success rates per signed 

gesture. A complete list of the tracking success rates for  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

each signed gesture in the first and second evaluation is 

presented in Table 1 and Table 2, respectively. The results 

in Figure 8 show that every sign obtained an average (avg.) 

success rate greater than 50% in both evaluations. In 

addition, three signs in the first evaluation – ―any‖, 

―electricity‖ and ―kitchen‖ – and one sign in the second 

evaluation – ―small‖ – obtained the highest possible success 

rate: 100%. This suggests that the hands were tracked 

independently throughout the video sequence. Furthermore, 

four signs in the first evaluation – ―man‖, ―please‖, ―towel‖ 

and ―why‖ – and six signs in the second evaluation – ―any‖, 

―electricity‖, ―kitchen‖, ―man‖, ―towel‖ and ―why‖ – 

obtained an average success rate of between 70% and 90%. 

In these signs, the hands were tracked independently, but 

were lost due to rapid hand motions and were later re-

tracked when the paths crossed between the hand and the 

assumed location. Three signs in both evaluations – 

―cupboard‖, ―small‖ and ―wrong‖ – obtained an average 

success rate below 70%. These video sequences contained 

gestures where the hands intersected and self-occlusion was 

more prominent. This suggests that the hands were either 

not tracked correctly or not predicted correctly after self-

occlusion occurred.  

When analysing the accuracy according to each individual 

signer, the majority of the subjects obtained an average 

success rate greater than 80%, with Signer E obtaining the 

highest average success rate of 92.60%. The results indicate 

that the hand-tracking framework performed equally well on 

each body type, as well as on the different skin-colour tones.  

When comparing the results between the two evaluations, 

the results were comparable. However, there is a distinct 

0%
10%
20%
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40%
50%
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70%
80%
90%

100%

Test 1

Test 2

Table 2: Results of the tracking evaluation of the framework in the 

second test set (%) 

 
Signer 

A 
Signer 

B 
Signer 

C 
Signer 

D 
Signer 

E 
Signer 

F 
Avg. 

Any 87.2 100 100 100 87.4 100 95.8 

Cup-

board 
36.8 37.7 36.4 39.1 98.6 56.4 50.8 

Elect-
ricity 

57.1 100 100 95.0 100 100 92.0 

Kitchen 89.9 100 100 100 100 100 98.3 

Man 98.8 100 82.9 100 100 100 97.0 

Please 100 100 100 100 100 100 100 

Small 46.1 38.7 32.5 50.7 93.9 46.1 51.3 

Towel 76.5 100 100 91.8 90.2 93.9 92.0 

Why 60.9 100 100 69.9 100 100 88.4 

Wrong  62.5 61.4 72.4 62.3 55.9 54.2 61.4 

Avg. 71.6 83.8 82.4 80.9 92.6 85.0 82.73 

 



 

difference when tracking between some signers on some 

signs, which suggest that the framework is not negatively 

affected by certain signs, but rather affected by the rapid 

movements of the signer, tracking failure or incorrect 

predictions by the SVM. In half of the total number of 

signed gestures, the system obtained a tracking success rate 

of 100%, thus being able to fully track both hands 

independently throughout the video sequence. Overall, the 

system achieved an average accuracy of 82%. 

V. CONCLUSION 

In this paper, a novel learning-based framework to 

independently track the right and left hands was presented. 

Connected components analysis was used to reduce noisy 

areas and cluster together skin-identified contours. In 

addition, a novel segmentation algorithm referred to as 

region reference points was introduced. The algorithm 

divides an image into a number of regions and holds 

information regarding motion, skin colour and cluster 

centres for each region. The information was collectively 

used to identify potential regions where the hand may be 

found. The identified region was subsequently used as a 

reference point, thereby limiting the search area and 

assisting in the tracking of the hands. The algorithm 

furthermore assists in identifying which features of the hand 

are ―good‖ features to learn. An SVM was used to learn 

these features and generate a model that was later used to 

distinguish between the right and left hands when they 

intersect and occlusion occurs. The framework was 

evaluated on ten SASL isolated signed gestures performed 

by six individuals, where each individual performed each 

gesture twice, so that a comparison could be made between 

the gesture sets. The results between the two evaluations 

were comparable and resulted in an overall tracking success 

rate of 82%. 

Although positive results were obtained, the framework 

requires several improvements. Tracking often fails when 

light is inconsistent throughout a frame, thus leading to 

weak back projection. A means to identify this condition is 

therefore required. Furthermore, should tracking fail, it 

should be immediately detected and a recovery mechanism 

should be employed. This would allow the hands to be re-

identified and tracked accordingly. It is furthermore 

believed that velocity would play an essential part in 

continuously tracking the hands and should be added to the 

information retrieved from each region when using RRP. 
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