
Soft decoding of Raptor codes over AWGN channels using
Probabilistic Graphical Models

Rian Singels, J.A. du Preez and R. Wolhuter
Department of Electrical and Electronic Engineering

University of Stellenbosch
Email: rsingels@gmail.com

Abstract—Raptor codes are a class of Fountain codes that
can reach data transmission rates at the capacity of the Binary
Erasure Channels (BEC’s) and has, therefore, been extensively
researched and refined for hard-decoding over these channels.
These Raptor codes are ideal for packet transmission over the
internet as they are a real world realization of the BEC’s. This
article extends the Raptor codes for soft-decoding, investigates
its performance over Additive White Gaussian Noise (AWGN)
channels, which can potentially be used for wireless broadcast
with asynchronous data access. We start by reviewing the
conventional problem formalization for Fountain codes and
consider the constraints common for both hard- and soft-
decoding. We explain how the traditional belief propagation
(BP) update rules may be transformed in order to avoid
computation over large distributions. The loopy BP algorithm
(a.k.a. sum-product algorithm) as well as 2 improvements,
i.e. expectation propagation and inactivation decoding, are
applied for soft-decoding in order to maximise the usage of the
information available at the decoder. Simulation results over
the AWGN channel of the decoding methods are compared.

I. INTRODUCTION

The pursuit for data transmission at rates close to the
channel capacity has long been sought and, until recently, has
merely been considered as theoretically feasible [1]. Then,
in May 1993, a revolution occurred in coding theory with
the release of a paper [2] that, almost by accident, combined
sparse-graph codes with low-complexity iterative decoding
thereby changing the way we approach error correcting
codes. Today we have many codes, including turbo codes
[2] and variations of low-density parity-check (LDPC) codes
[3], [4] that perform close to channel capacity and may
be implemented with low-complexity decoding algorithms.
However, these codes have design difficulties due to their
fixed code rates. Furthermore, they require that all packages
be received and are received in order. These restrictions
render these codes unsuitable for broadcasting [5].

Another class of codes, called fountain codes, does not
suffer from these restrictions. The “digital fountain ap-
proach” concept was first introduced in [6] for communica-
tion over an erasure channel with unknown erasure probabil-
ity. What makes fountain codes appropriate for broadcasting
is that they are naturally rateless, i.e. for a given finite set
of source packets, a fountain code can theoretically generate
an infinite sequence of coded output packets. This is done
while still retaining low complexity for both the encoding
and decoding and therefore, remain viable codes for time
constraint applications.

The first practical realization of a fountain code was the
LT-code as introduced by M. Luby in [7] for Binary Erasure
Channels (BEC). Initially, the LT-code divides the data file
into equal packets, called source symbols, and encodes these

into output symbols. Each of these output symbols is a linear
combination of a random subset of the source symbols,
as defined by an output degree distribution. These output
symbols are then transmitted over the channel and decoded
at the receiver to render the original source symbols. Due
to the randomisation of the dependencies of the output
symbol to the source symbols, the receiver may receive the
output symbols in any order. Furthermore, as long as enough
output symbols are received, we can successfully decode
even when some output symbols are lost completely. This
is ideal for broadcasting as explained in [5]. Unfortunately
it turns out that, for reliable decoding, the length of the LT-
code increases greatly with smaller increases of the code’s
block length.

In this paper we will focus on an extension of the LT-code
called the Raptor (rapid-tornado) code. Raptor codes first
encode the initial source symbols with a sparse-graph code
(usually LDPC codes), which we refer to as the pre-code,
and thereafter continues to encode these new symbols (which
we will refer to as input symbols) with the LT-code. This
solves the problem of super-linear growth and yields linear
time encoders and decoders [8]. This article also extends
the Raptor codes for soft-decoding, which can potentially be
used for wireless broadcast with asynchronous data access.

II. RAPTOR CODES

A. Graph structure of Raptor codes

The factor graph of an example Raptor code is presented
in Fig. 1 and consists of 2 parts. The first, uppermost part of
the graph is the pre-code with the input symbol gained after
the initial source symbols were encoded with this pre-code.
The pre-code factors define their XOR relationship to each
other. In the lower part of the graph we have the LT-code
to encode the output symbols as defined by the LT-factors,
which define each output symbols’ XOR relationship to the
input symbols. This graph structure applies to the transmitter
and receiver alike, although at the receiver only the output
symbols are received and the original input symbols are
inferred from them, using this graph and some approximate
inference algorithm.

B. Information transition over factors

We can define the decoding problem, from a probabilistic
graphical model point of view, as the distribution of collected
information over the factor graph. Initially the input symbol
are undetermined at the receiver before decoding and each
output symbol contains some information of the rest of the
graph. Once we have collected enough output symbols we

fa fb fc

z0 z1 z2 z3 z4 z5 z6

f0 f1 f2 f3 f4 f5 f6 f7

y0 y1 y2 y3 y4 y5 y6 y7

pre-code factors

Input symbols

LT-code factors

Output symbols

Fig. 1. A schematic diagram of a Raptor code. In this example, D = 4
source symbols was encoded at the transmitter to N = 7 input symbols
using a (7,4) Hamming pre-code [9]. These packets were then encoded into
M = 8 output symbols with a weakened LT-code. These output symbols
are then transmitted to the receiver. At the receiver the input symbols are
unknown, thus it uses the received output symbols to infer (decode) the
input symbols. Note that the LT-code has failed to connect z3 to any LT-
factor, however this symbol can be recovered through the pre-code.

will have enough information to determine the correct values
of the input symbols, with high certainty.

However, having enough information in the global sense
is not the only necessity for successful inference. We also
require enough localised information to successfully transfer
the information in the output symbols to the input symbols.
Specifically, we need enough information over each factor
in order to perform inference over it.

Take, for example, the LT-factor f0 in Fig. 1. The rela-
tionship between its connected symbols is

y0 ⊕ z0 ⊕ z1 = 0

where the modulo-2 addition (XOR) is represented by the
symbol ⊕. Now let us assume that we know y0 = 1 and
nothing of z0 and z1. The previous equation then simplifies
to

z0 ⊕ z1 = 1

This still leaves us with 2 possible solutions. Thus, knowing
only one symbol is not enough information to obtain a
unique solution. In fact, for a factor of N dependent symbols,
we need to know the value of N − 1 symbols to obtain a
unique solution.

This problem is true for soft-decision inference as well.
In fact, the probability of the symbol we wish to compute
will be more or less equal to the symbol with the lowest
probability. Moreover, if 1 of the symbols other than the one
being computed has a probability distribution of {0.5, 0.5},
the resulting distribution will be the same. It is left for the
reader to prove that this is true.

We therefore require a very specific graph structure in
order to successfully propagate the information in each
output symbol across the entire graph. For larger codes
we may construct such a code by using an output degree
distribution.

C. Degree distributions for fountain codes

As was just shown, to ensure a high probability of
successful decoding, we need the output symbols’ depen-
dencies to obtain such a structure that it ensures successful
inference over all LT-factors. Although the output symbols’
dependencies are randomised, we can try to choose the input
degree of these LT-factors in such a way that no redundancy

exists in the structure of the graph, while ensuring proper
inference. We would like to be able to transfer information
to at least 1 new input symbol that does not yet contain
any information at every iteration. For the theoretical Raptor
code with endless output symbols, this can be achieved by
the ideal soliton distribution [7], [10] defined as follows

ρ(d) =

{
1
N for d = 1

1
d(d−1) for d = 2, 3, . . . , N

where d is the input degree of the LT-factor and N is the
total number of input symbols.

In practice, however, we will always have only a finite
number of output symbols and in this case the ideal soliton
distribution performs poorly. In [7] some adjustments were
made to improve the distribution’s performance in practice.
The result is called the Robust soliton distribution and is
defined as follows

τ(d) =

S
dN for d = 1, 2, . . . , (NS − 1)
S
N ln(Sδ) for d = N

S

0 otherwise

where S ≡ c ln(Nδ)
√
N for some suitable choice of c and

δ. For more on how to choose these parameters the reader
is referred to [7].

D. Encoding of Raptor codes

Let us assume a data file of length L which we wish to
transmit. To minimise packet overhead we choose the symbol
size l and divide the data file into D = L

l symbols. These
symbols are then encoded using some sparse code such as
LDPC codes (in Fig. 1 we used the Hamming (7,4) code).
We then generate the output symbols on-the-fly according to
the following steps:

1) Choose the degree d of the new output symbol ran-
domly from a degree distribution such as the Robust
soliton distribution.

2) Choose uniformly d different random input symbols
as dependencies of the new symbol.

3) The output symbol will be the result of the XOR on
the d chosen input symbols to satisfy even parity.

Output symbols are produced until decoding is successful.

III. BELIEF PROPAGATION

The decoding of Raptor codes are most often done us-
ing the Belief-Propagation (BP) algorithm (a.k.a the sum-
product algorithm). In the following section we explain how
the traditional BP update rules can be transformed in order
to avoid computation over large distributions and how they
are used to decode the Raptor code.

A. Conversion of update rules

The BP algorithm uses message-passing over bipartite
Tanner graphs [11] (such as the one in Fig. 1) to decode
a transmitted code word. More specifically, these graphs
consist of 2 disjointed sets; variable nodes and factor nodes.
A message passed along the edge between an arbitrary
symbol xn (which may be any input or output symbol) and
factor fm is one of the two following possible update rules,
as defined in [9], [12]:

�

�

�

�

Updating rule from variable to factor:

µxn→fm(xn) =
∏

fi∈fn\fm

µfi→xn
(xn) (1)

Updating rule from factor to variable:

µfm→xn(xn) =
∑

xm\xn

fm(xm)
∏

xi∈xm\xn

µxi→fm(xi)

 (2)

Considering that Raptor codes consist of discrete variables,
the number of entries in the distribution of fm(xm) is
exponential to the number of symbols in xm i.e. 2|xm|. For
sparse graphs such as those of LDPC codes, the factors
remain small and thus these equations suffice for low
complexity and reliable inference. However, due to the
Robust soliton distribution introduced in Section II we are
almost guaranteed to have factors of high density. These
dense factors greatly increases the complexity of decoding
and computations done over their distributions become
intractable to the extent that decoding is NP-hard.

Fortunately we can avoid computation over these large
distribution tables by making the observation that our factors
enforce even parity over their dependencies. This allows us
to re-express the BP algorithm for the special case of even
parity, using the Log Likelihood Ratio (LLR) form [12],
[13].

Firstly we would like to define a function to describe
the even parity constraint. We know that even parity is the
equivalent of the modulo-2 addition (XOR). For the case of
an 2 independent Binary Random Variables (BRVs) x and
y, with probability distributions P (x) = {p(x)0 , p

(x)
1 } and

P (y) = {p(y)0 , p
(y)
1 }, the probability for even parity is:

P (x⊕y = 0) = px0p
y
0 + px1p

y
1

= (px0 + px1)(p
y
0 + py1) + (px0 − px1)(p

y
0 − p

y
1)

− (px0p
y
0 + px1p

y
1)

=
1

2
((px0 + px1)(p

y
0 + py1) + (px0 − px1)(p

y
0 − p

y
1))

By induction we can extend this for an arbitrary finite
amount of BRV’s xi for i = 0, 1, 2 . . . , N . Then we have:

P

(
N∑
i=0

⊕ xi=0

)
=
1

2

(
N∏
i=0

(p
(i)
0 +p

(i)
1)+

N∏
i=0

(p
(i)
0 −p

(i)
1)

)
(3)

P

(
N∑
i=0

⊕ xi=1

)
=
1

2

(
N∏
i=0

(p
(i)
0 +p

(i)
1)−

N∏
i=0

(p
(i)
0 −p

(i)
1)

)
(4)

Notice that the term
∏N
i=0(p

(i)
0 +p

(i)
1) = 1, however we will

not implement this simplification as this will not be the case
once we convert these equations to the LLR domain.

We will define the LLR of the BRV x as L(x) =

ln
(
P (x=0)
P (x=1)

)
. This also implies the following relationships:

P (x = 0) =
eL(x)

1 + eL(x)
(5)

P (x = 1) =
1

1 + eL(x)
(6)

Furthermore, considering that the incoming message in equa-
tion (2) are of independent symbols in LLR form, it is useful

to use the symbol � as the notation for the addition defined
as:

L(x1)�L(x2)� . . .�L(xN) ≡ L(x1⊕x2⊕ . . .⊕xN) (7)

To retain mathematical integrity the following additional
rules also apply [13]:

L(x)� ∞ = L(x)

L(x)�−∞ = −L(x)
L(x)� 0 = 0

Using equations (3) to (6) we can extend equation (7) such
that
N∑
i=0

� L(xi) ≡ L

(
N∑
i=0

⊕ xi

)

= ln

N∏
i=0

(
eL(xi) + 1

)
+

N∏
i=0

(
eL(xi) − 1

)
N∏
i=0

(
eL(xi) + 1

)
−

N∏
i=0

(
eL(xi) − 1

)

Using the identity tanh(x2) =
ex−1
ex+1 we can simplify

N∑
i=0

� L(xi) ≡ ln

1 +

N∏
i=0

tanh

(
L(xi)

2

)

1−
N∏
i=0

tanh

(
L(xi)

2

)

furthermore, if we define κ ≡
∏N
i=0 tanh

(
L(xi)

2

)
we have

tanh

(
1

2

N∑
i=0

� L(xi)

)
=
e
ln

(
1 + κ

1− κ

)
− 1

e
ln

(
1 + κ

1− κ

)
+ 1

=
(1 + κ)− (1− κ)
(1 + κ) + (1− κ)

= κ

Therefore we conclude that
N∑
i=0

� L(xi) ≡ 2 tanh−1

(
N∏
i=0

tanh

(
L(xi)

2

))
Let us now consider the BP updating rules (1) and (2).

To help distinguish between the linear and LLR domains we
will define the following relationship

λxn→fm(xn) ≡ L(µxn→fm(xn))

λfm→xn
(xn) ≡ L(µfm→xn

(xn))

It is thus easy to show that the updating rule for variable to
factor message (1) now becomes:

L(µxn→fm(xn)) = L

 ∏
fi∈fn\fm

µfi→xn
(xn)

λxn→fm(xn) =

∑
fi∈fn\fm

λfi→xn
(xn) (8)

The LLR transformation of the updating rule for factor to
variable is somewhat more elaborate. As mentioned before,

x f

·
·
·

·
·
·

µx→f(x)

µf→x(x)

Fig. 2. A sub-graph of a arbitrary factor graph, showing a symbol x, factor
f and the two types of messages sent along the edges of a graph that are
involved in the BP algorithm. x will only transmit µx→f (x) once it has
received a message from all other factors it shares an edge with. Similarly,
factor f will not transmit µf→x (x) before it has received all messages
from all the symbols it is connected to.

fm(xm) enforces even parity and thus the summation over
this distribution can be represented as a modulo-2 addition,
such that∑

xm\xn

fm(xm)
∏

xi∈xm\xn

P (xi) ≡ P

 ∑
xi∈xm\xn

⊕ xi

With this knowledge we may continue our transformation of
the updating rule for factor to variable messages (2):

L(µfm→xn
(xn))

= L

 ∑
xm\xn

fm(xm)
∏

xi∈xm\xn

µxi→fm(xi)

λfm→xn

(xn)

= L

 ∑
xi∈xm\xn

⊕
∏

xi∈xm\xn

µxi→fm(xi)

=

∑
xi∈xm\xn

� λxi→fm(xi)

which leaves us with the new updating rule

λfm→xn
(xn) = 2 tanh−1

(
N∏
i=0

tanh

(
λxi→fm(xi)

2

))
(9)

B. Message passing

The BP algorithm was originally designed for tree-like
Tanner graphs and, unfortunately, Raptor codes in general
contain many loops. However, these loops are generally large
enough that the code is tree-like over the span of localised
sub-graphs which allows us to use the LBP algorithm.

LBP is an iterative process where the messages (equa-
tions (8) and (9)) are passed across the graph until con-
vergence. This algorithm will not produce exact inference
as in the case of tree-like graphs, nor does it guarantee
convergence. However, despite these shortfalls it has been
proved to achieve good decoding performance and thus
remains useful in practice [14].

The message passing schedule applied in this paper is
called message flooding. We start by initiating all messages
from variables symbols to become

for all n and m: λxn→fm(xn) = 0

which is often referred to as lazy initialisation. This causes
all factor nodes to receive a message across all of their
edges, enabling them to transmit a new message back to
those same variable symbols in turn. If Fig. 2 is considered,
the message λx→f(x) will initially be 0. The factor f
receives this message and all other messages across all other
edges connected to that. It then updates it’s messages using

equation (9) and returns message λf→x(x) and all other
messages across all other edges. Symbol x goes through a
similar process using equation (8). This process continues
until convergence occurs.

IV. IMPROVEMENTS ON BELIEF PROPAGATION

A. Tree-structure Expectation propagation

As mentioned before, one fundamental problem with
fountain codes is that enough input degree 1 (N = 1) LT-
factors are required in order to initiate the BP algorithm.
Conventionally this problem is overcome by introducing very
large fountain codes. However with very little or no increase
in complexity we can use the relationship of the input and
output symbols, as defined by the LT-factors, to change the
structure of the factor graph in order to obtain the necessary
N = 1 LT-factors.

An algorithm called Tree-structure Expectation Propaga-
tion (TEP) is proposed and analysed in [15]. It changes the
graph structure to decode LDPC codes over the Binary Era-
sure Channel (BEC). In [16] this algorithm was analysed for
the LT-code over the BEC. Here we will adapt the algorithm
for Raptor/LT code over the Additive White Gaussian Noise
(AWGN) channels (i.e. soft-decoding).

TEP is only triggered once the BP fails as described in
Section II-B. The algorithm starts by searching for the first
N = 2 LT-factor (f0) that is a function of the two input
symbols (z0 and z1) as depicted in Fig. 3. Once found, this
factor is added to a list which will exclude it from searches
in future iterations of the algorithm. Thereafter, one of the
two input symbols is chosen (z1). All LT-factors, other than
the originally chosen factor (f0), that shares an edge with
both z0 and z1 have both edges removed. Each LT-factor
sharing an edge with z1, but not with z0, has its link to
z1 removed and a link to z0 added. Furthermore, all output
symbols connected to f0 (y0) are connected to each factor
that had its links to z1 and/or z0 removed. Finally, once
the graph restructuring is done, the algorithm will try to
implement BP again and if decoding is not successful the
process will be repeated.

In the example of Fig. 3 the TEP algorithm is successful
in producing a N = 1 factor (f2). In fact the TEP algorithm
will only be successful if and only if a N = 3 LT-factor
share both the input symbols of the chosen N = 2 LT-factor
with it. However, it is shown in [15] that the probability of
producing a N = 1 factor increases exponentially after each
iteration of the algorithm.

The TEP algorithm is based upon a basic observation that
the relationship as defined by the LT-factor can be viewed
as simultaneous XOR equations. Thus, for the instance in
Fig. 3a we have,

y0 = z0 ⊕ z1 y2 = z0 ⊕ z1 ⊕ z2
y1 = z1 ⊕ . . . y3 = z0 ⊕ . . .

The order of the variables does not matter, thus we may
also write the first equation as z1 = y0 ⊕ z0. We can now
substitute this into the other equation to remove z1, leaving
us with

y0 = z0 ⊕ z1 y0 ⊕ y2 = z0 ⊕ z0 ⊕ z2
y0 ⊕ y1 = z0 ⊕ . . . y3 = z0 ⊕ . . .

z0 z1 z2

f0 f1 f2 f3

y0 y1 y2 y3

· · ·

· · ·

· · ·

· · ·

(a) Before

z0 z1 z2

f0 f1 f2 f3

y0 y1 y2 y3

· · ·

· · ·

· · ·

· · ·

(b) After

Fig. 3. A sub-graph of the Raptor code in Fig. 1. Note that it only consists
of the LT section of the code. (a) The sub-graph before 1 iteration of TEP,
with f0 as the chosen N = 2 factor and z1 is to be isolated. Here f2
shares both input symbols with f0, where f1 and f3 only shares one of the
2 symbol. (b) The sub-graph after 1 iteration of TEP where we can see that
f2 has now become a N = 1 factor. f1’s edges have also been altered,
whereas f3 remains the same.

Note that a variable XOR’ed with itself is 0, therefore the
third equation reduces to y0⊕y2 = z2. These final equations
now represent the relationships in Fig. 3b.

B. Inactivation decoding

The following algorithm, termed Inactivation decoding
(ID), was developed in order to combine the decoding
success rate of Gaussian elimination with the low complexity
of belief propagation [17] and is analysed for BEC’s in [5].
Once again we will make minor adaptations to the algorithm
for soft decoding over AWGN channels.

Before the algorithm starts, all input symbols are con-
sidered active symbols. Only active symbols are included
when calculating N of a LT-factor. The algorithm starts by
searching for a LT-factor of N = 1. Once found it performs
Gaussian elimination on the LT-constraint matrix (or equiv-
alent operations on the factor graph), thus eliminating the
active input symbol from all other LT-factors. Just as with
TEP, we add a link between all output symbols connected
to the N = 1 LT-factor and those which had the variable
removed. The corresponding input symbol of the N = 1
LT-factor is now considered recovered (and thus is no longer
included when calculating N) and is excluded from the rest
of the algorithm until BP is applied to the final factor graph.
A simple example is depicted in Fig. 4, where input symbol
z5 is to be recovered via LT-factor f5. ID replaces the edges
z5 to f4 and z5 to f6 with the edges y5 to f4 and y5 to f6,
respectively.

This process continues until no N = 1 exists. If this is
the case, the algorithm inactivates an input symbol that has
not yet been recovered. By doing so the inactivated symbol
will be ignored when choosing a factor to eliminate, i.e. all
factors connected to the inactivated symbol have their input
degree reduced by one. After a symbol has been inactivated,
the algorithm once again searches for a LT-factor of N = 1.
If none is found another input symbol is inactivated. This

z5

f5 f6f4

y5 y6y4

· · ·· · ·

(a) Before

z5

f5 f6f4

y5 y6y4

· · ·· · ·

(b) After

Fig. 4. Another sub-graph of the Raptor code in Fig. 1. Fig (a) shows the
sub-graph before 1 iteration of ID, with z5 as the symbol to be recovered.
Fig (b) shows the sub-graph after ID. This is possible because factor f5
defines y5 = z5, therefore replacing z5 with y5 in factors f4 and f6 retains
the validity of their distributions.

continues until all input variables are ether recovered or
inactivated. This adds another constraint to the ID: there
needs to be at least as many LT-factors (thus output symbols)
as there are input symbols. Finally, BP is applied to the new
factor graph.

In many ways this algorithm is very similar to TEP, in fact
the instance depicted in Fig. 3 can be viewed as a special
case of recovery of z1, where z0 is inactivated. However ID
manipulates the graph structure to a greater extent and does
not wait for BP to fail before initiating. Therefore both these
algorithms end up with vastly different factor graphs and, as
we shall see, vastly different decoding performances.

V. PERFORMANCE EVALUATION

A. Simulation parameters
For testing transmission over the binary AWGN channel,

we used binary inputs {−1,+1} to represent input bit values
{0, 1} respectively. We tested the 3 decoding algorithms
described in this paper on a Raptor code with the precode
of the R10 code (a standard code used in the industry [5]).
A small block size of B = 50 bits was used to reduce
simulation time. Although these small codes do not fare as
well as larger codes, they suffice to depict the behaviour
of the 3 algorithms. The symbol size over all simulations
was set to 1 bit as we assumed synchronous communication
between sender and receiver, thereby negating the necessity
for package headers. Subsequently the same performance
will be obtained for larger symbol sizes.

Simulations were run to compare the rate of block de-
coding failure (block error rate) against the noise variances
σ. σ is incremented in steps of 0.05 from 0 to 1, and each
data point is the result over 500 iterations. The overhead was
chosen as 30% and 100%, where the overhead is measured
as the percentage of output symbols compared to the input
symbols. Unfortunately, the differences between hard- and
soft-decoding are of such a nature that comparing them is
nonsensical, thus we do not compare our simulation result
over AWGNC to that of conventional BEC.

Noise variance

B
lo
ck

E
R

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

bc bc bc bc bc bc bc bc bc
bc

bc

bc

bc

bc

bc

bc
bc

bc
bc bc bc

bc bc bc bc bc bc bc bc
bc

bc

bc

bc

bc

bc

bc

bc
bc bc bc bc bc

bc bc bc bc bc bc bc bc bc
bc

bc

bc

bc

bc

bc

bc
bc bc bc bc bc

BP

EP

ID

(a) 30% overhead

Noise variance

B
lo
ck

E
R

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

bc bc bc bc bc bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc bc bc bc

bc bc bc bc bc
bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc
bc bc

bc bc bc

bc bc bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc bc bc bc bc bc bc bc

BP

EP

ID

(b) 100% overhead

Fig. 5. The 2 graphs display the simulation results for the cases of 30%
and 100% overhead, respectively. In fig. (a) all 3 algorithms perform well.
Here ID outperforms BP and TEP considerably, with almost no block errors
at low noise levels. One may also observe that all 3 algorithms’ decoding
performances decline rapidly after σ = 0.5. In fig. (b) all 3 algorithms
show improvements in performance compared to that of fig. (a). However,
ID’s increase in performance is far less significant than those of BP and
TEP and as a result they now outperform ID.

B. Simulation results

In Fig. 5a we show the results for transmission with an
overhead of 30% for σ = 0 (absence of noise) to σ = 1.0.
As we can see, TEP marginally improves on the performance
of BP for low levels of noise, as is to be expected. However
ID greatly outperforms them both, reaching very small error
rates for σ as high as 0.4.

Considering only this evidence, we may deem ID the
far superior decoding algorithm, which is the case for
BECs. However Fig. 5b shows interesting results that suggest
otherwise. Here we show the results for transmission with
an overhead of 100% for σ = 0.4 to σ = 1.4. Although
all 3 algorithms’ performance increase with the overhead,
BP and TEP shows a far greater improvement than ID to
the extent that they outperform it for higher levels of noise.
This slow improvement of the decoding performance of ID
in the presence of noise can be contributed to 2 phenomena.
The first being the dense loops created between the output
symbols (that retain the initial information) when the graph
is restructured. This implies that the assumption of localised
tree-like sub-graphs is no longer valid and therefore, BP fails.
The second cause is due to the fact that far more weight is
placed upon output symbols involved early during the ID
algorithm, thereby not utilising all given information fully.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we considered the Raptor codes for soft de-
coding and investigated its performance over binary AWGN
channels. We started by reviewing fountain codes and con-
sidered its constraints common to both hard- and soft-
decoding. We explained how to construct the BP update rules

in order to avoid computation over large distributions. We
continued to apply and simulate the loopy BP, EP and ID
algorithms on a Raptor code for soft-decoding and compared
the results.

It is clear that, although ID has a good performance
at low overhead, it is outperformed by BP and TEP at
higher overhead levels. In contrast, BP and TEP has a
poorer performance at low noise levels, but has a greater
resistance against increasing noise levels if a large overhead
is provided.

Future work include investigating the junction tree al-
gorithm to avoid loopy inference and the necessity for
N = 1 LT-factors. This may be combined with techniques
to approximate the very large clusters of junction trees.
Furthermore, damping techniques might be used on the
messages in order to reduce the oscillations of message
values to in effect, improve message convergence and thus
decoding performance.

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communication,” Bell
system technical journal, vol. 27, 1948.

[2] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit
error-correcting coding and decoding: Turbo-codes. 1,” in Commu-
nications, 1993. ICC 93. Geneva. Technical Program, Conference
Record, IEEE International Conference on, vol. 2, may 1993, pp.
1064 –1070 vol.2.

[3] T. Richardson and R. Urbanke, “The capacity of low-density parity-
check codes under message-passing decoding,” Information Theory,
IEEE Transactions on, vol. 47, no. 2, pp. 599 –618, feb 2001.

[4] T. Richardson, M. Shokrollahi, and R. Urbanke, “Design of capacity-
approaching irregular low-density parity-check codes,” Information
Theory, IEEE Transactions on, vol. 47, no. 2, pp. 619 –637, feb 2001.

[5] A. Shokrollahi and M. Luby, “Raptor codes,” Foundations and Trends
in Communications and Information Theory, vol. 6, no. 3-4, pp. 213–
322, 2011. [Online]. Available: http://dx.doi.org/10.1561/0100000060

[6] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A digital
fountain approach to reliable distribution of bulk data,” SIGCOMM
Comput. Commun. Rev., vol. 28, no. 4, pp. 56–67, October 1998.
[Online]. Available: http://doi.acm.org/10.1145/285243.285258

[7] M. Luby, “Lt codes,” Foundations of Computer Science, IEEE Annual
Symposium on, vol. 0, p. 271, 2002.

[8] P. Pakzad and A. Shokrollahi, “Design principles for raptor codes,”
in Proceedings of the IEEE Information Theory Workshop, 2006, pp.
165–169.

[9] D. J. C. MacKay, Information theory, inference and learning algo-
rithms, 4th ed. Cambridge University Press, March 2003.

[10] ——, “Fountain codes,” in The IEE Seminar on Sparse-Graph Codes.
London: IEE, 2004, pp. 1–8.

[11] T. Richardson and R. Urbanke, Modern Coding Theory. New York,
NY, USA: Cambridge University Press, 2008.

[12] F. R. Kschischang, B. J. Freyy, and H.-A. Loeliger, “Factor graphs
and the sum product algorithm,” vol. 47, no. 2, pp. 498–519, February
2001.

[13] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary
block and convolutional codes,” IEEE Transactions on Information
Theory, vol. 42, no. 2, pp. 429–445, 1996.

[14] Y. Weiss, “Belief propagation and revision in networks with loops,”
Massachusetts institute of technology, Tech. Rep., November 1997.

[15] P. Olmos, J. Murillo-Fuentes, and F. P. andrez Cruz, “Tree-structure
expectation propagation for decoding ldpc codes over binary erasure
channels,” in Information Theory Proceedings (ISIT), 2010 IEEE
International Symposium on, June 2010, pp. 799 –803.

[16] M. A. Guede, “Optimization of the belief propagation algorithm for
luby transform decoding over the binary erasure channel,” Master’s
thesis, Delft University of Technology, Augustus 2011.

[17] A. Shokrollahi, S. Lassen, and R. Karp, “Systems and processes
for decoding chain reaction codes through inactivation,” U.S. Patent
number 6 856 263, February 2005.

Rian Singels received his bachelors degree in Electrical & Electronic
Engineering from the University of Stellenbosch, South Africa in 2010. He
is currently completing his masters degree in the same field at the University
of Stellenbosch. His current studies focuses on the assessment of Raptor
codes on soft-decision inference with probabilistic graphical models.

